代理國外軟體

12月銷售軟體排行

1. MindManager 視覺化思考繪圖軟體
2. EViews 預測分析計量軟體
3. LISREL 線性結構分析軟體

4.

ATLAS.ti 定性量化分析軟體
5.

EndNote 參考書目軟體

6.

Stata 資料管理統計繪圖軟體

7. See5/C5.0  資料探勘軟體
8. HLM 階層分析軟體
9.

Expert Choice  AHP專家決策分析軟體

10. Grapher 3D科學繪圖軟體

 

 

柏際股份有限公司
TEL 02-2592-3171
FAX 02-2592-3172
info@bockytech.com.tw

Google

**提供各式軟.硬體代訂服務! **
如有未列於網站之產品需求,
請來電或來信詢問!
info@bockytech.com.tw


 

Latent GOLD  統計分析軟體

Latent GOLD 4.5 是一個強大的潛在類和有限混合程式。Latent GOLD包含單獨的模組,用於估算三個不同的模型結構:
潛伏類群集模型

離散因數(DFactor)模型

潛伏類回歸模型

功能

完整的 windows 執行-點擊

互動式圖形提供資料和功能強大的模型診斷功能的新見解

靈活的模型結構可以處理不同的標準變數

隨機的起始值集的自動生成

快速、 高效的最大似然和後模式估算基於 EM 和牛頓拉夫演算法

貝葉斯常量,消除邊界解決方案的使用

二元殘餘診斷為本地依賴項

Overview
Latent GOLD 4.5 is a powerful latent class and finite mixture program. Latent GOLD contains separate modules for estimating three different model structures:
Latent Class Cluster models
Discrete Factor (DFactor) models
Latent Class Regression models

 

Features
Full windows implementation - point and click
Interactive graphics provide new insights into data and powerful model diagnostic capabilities
Flexible model structures can handle variables of different metrics
Automatic generation of sets of random starting values
Fast, efficient maximum likelihood and posterior mode estimation based on EM and Newton Raphson algorithms
Use of Bayes constants to eliminate boundary solutions
Bivariate residual diagnostic for local dependencies
 

Capabilities
Known Class Indicator
This feature allows more control over the segment definitions by pre-assigning selected cases (not) to be in a particular class or classes.

Conditional Bootstrap p-value
Model difference bootstrap can be used to formally assess the significance in improvement associated with adding additional classes, additional DFactors and/or an additional DFactor levels to the model, or to relax any other model restriction.

Overdispersed (Count and Binomial Count in Regression)
Overdispersion is a common phenomenon in count data. It means that, as a result of unobserved heterogeneity, the variance of the count variable is larger than estimated by the Poisson (binomial) model. The overdispersed option makes it possible to account for unobserved heterogeneity by assuming that the rates (success probabilities) follow a gamma (beta) distribution. This yields a negative-binomial model for overdispersed Poisson counts and a negative-binomial model for overdispersed binomial counts. Note that this option is conceptually similar to including a normally distributed random intercept in a regression model for a count variable.

The overdispersion option is useful if one wishes to analyze count data using mixture or zero-inflated variants of (truncated) negative-binomial or beta-binomial models (Agresti, 2000; Long, 1997; Simonoff, 2003). The negative-binomial model is a Poisson model with an extra error term coming from a gamma distribution. The beta-binomial model is a variant of the binomial count model that assumes that the success probabilities come from a beta distribution. These models are common in fields such as criminology, political sciences, medicine, biology, and marketing.
 

請填寫你的資料以便寄送產品相關訊息:

公司: 部門:
姓名: 職稱:
電話: EMAIL:

請選取您所要的產品訊息:

  Latent Gold  軟體資料
  Latent Gold  軟體報價
如有其他需要請填寫在底下空格內:

確定送出資料  重填